

Center of Rail Safety-Critical Excellence

ASCAP BRIEFING

22 OCTOBER 2002

Professor Ted C. Giras

GINIA Center of Rail Safety-Critical Excellence

ASCAP BRIEFING TOPICS

CSX CBTM STATUS

- DTC: TRAFFIC EXPOSURE ALGORITHM (TEA)
- TRAIN DYNAMIC MOVEMENT
- SEVERITY MISHAP CLASSIFICATION
- RANDOM NUMBER GENERATOR
- HUMAN-FACTORS

ASCAP++ LESSONS LEARNED EXTENSIONS

- CTC: TRAFFIC EXPOSURE ALGORITHM (TEA)
- CTC WAYSIDE INTERLOCKING
- CAB SIGNALING
- BLACKBOARDS
- MAINTENANCE-OF-WAY (MOW)
- MULTI-STATE DEVICE PROBABILISTIC BEHAVIOR
- EVENTS PASSED AT DANGER (EPADS) FAULT TREES
- EPAD LOGS
- SEVERITY & MISHAPS

Center of Rail Safety-Critical Excellence

CSX DTC-CBTM STATUS

OVERVIEW

- GENETIC ALGORITHM USED TO IDENTIFY TMA HIDDEN PARAMETERS
- HYBRID TRAIN DYNAMIC MOVEMENT MODEL INSTALLED
- FRA/CSX DEVELOPING TMA STRING CHARTS TO VERIFY ASCAP TMA
- EVENT PASSED AT DANGER LOGS COMPLETED
- RANDOM NUMBER GENERATOR PERFORMANCE VERIFIED
- HUMAN-FACTORS CALIBRATION COMPLETE
- SEVERITY MISHAP MODEL COMPLETED
- FINAL PRESENTATION TO "PEER REVIEW" GROUP REQUIRED

Center of Rail Safety-Critical Excellence

WHAT ARE THE ASCAP++ LESSONS LEARNED?

OVERVIEW

- CTC TRAFFIC EXPOSURE ALGORITHM (TEA)
- TRAIN DYNAMIC MOVEMENT MODEL
- CTC WAYSIDE INTERLOCKING
- CAB SIGNALING
- BLACKBOARDS
- MAINTENANCE-OF-WAY WORKERS (MOW)
- MULTI-STATE DEVICE PROBABILISTIC BEHAVIOR
- EVENTS PASSED AT DANGER (EPADS) FAULT TREES
- SEVERITY & MISHAPS

CTC: TRAFFIC EXPOSURE ALGORITHM (TEA)

- DEFINES THE COMPUTER AIDED DISPATCH TRAIN MOVEMENT CAPABILITIES
- TEA IS PARTITIONED AS FOUR(4) SEGMENTS:
 - COMPUTER AIDED DISPATCH (CAD) SCHEDULING
 - MEET/PASS CONFLICT RESOLUTION
 - IMPLEMENTS TRAIN CONSIST PRIORITIES
 - TRAIN DYNAMIC MOVEMENT MODEL
 - TRAIN CONSIST AND MOW EQUIPMENT MOVEMENT

Center of Rail Safety-Critical Excellence

TRAIN DYNAMIC MOVEMENT MODEL

- HYBRID TRAIN DYNAMIC MODEL INSTALLED WITH THE FOLLOWING FEATURES:
 - DAVIS EQUATION, GRAVITY, LENTHG, TRACTION EFFORT
 - FOR DISCRETE EVENT SIMULATION POLYNIOMALS PROVIDE FOR EACH SPEED ZONE THE FOLLOWING:
 - AVERAGE SPEED VERSUS WEIGHT/POWER RATIO (LENGTH)
- MISHAP POTENTIAL DETECTION USES CONTINUOUS SIMULATION:
 - ACTIVATED WITH AN EVENT PASSED AT DANAGER
 - INTERGRATED WITH HUMAN-FACTORS
 - PROVIDES TRAIN MOVMENT DYNAMIC VECTOR

Center of Rail Safety-Critical Excellence

CTC WAYSIDE INTERLOCKING

- WAYSIDE SIGNAL CONTROLS DEFINED BY BOOLEAN EQUATIONS TO PERFORM THE FOLLOWING TYPICAL FUNCTIONS:
 - FUNCTION OF TRACK OCCUPANCY
 - FUNCTION OF CAD TRAIN ROUTE LOCKING
 - PREVENTS DISPATCHER FROM ASSIGNING CONFLICTING ROUTES
 - BOOLEAN EQUATIONS USED TO SIMULATE SIGNALING LOGIC

Center of Rail Safety-Critical Excellence

CAB SIGNALING

- CAB SIGNING MODEL HAS BEEN DEVELOPED WITH THE AID OF US&S AND UP:
- THE FOLLOWING MAJOR ELEMENTS ARE CONSIDERED:
 - ON-BOARD AUTOMATIC TRAIN PROTECTION (ATP)
 - FOUR(4) ASPECT ON-BOARD DISPLAY
 - LOCOMOTIVE TRACK CIRCUIT READER
 - TRACK CIRCUIT INTEGRATION
 - WAYSIDE SIGNAL INTEGRATION

Center of Rail Safety-Critical Excellence

Human Factors Model

- Supports train crew, dispatcher and mow
 - Voice control
 - Train handling
- Model Parameters
 - Probability of recognition
 - Probability of interpretation
 - Probability of coverage
 - Probability of compliance
- Integrated with the Dynamic Train Model
- Integrated with CTC Signaling Blackboards

MOW Model

- Supports predefined or dispatcher generated work zones:
 - Dispatchers can spawn work zones due to train crews reporting equipment failures encountered while in route
 - Dispatchers can set up overlapping work zones
 - Dispatcher can can improperly revoke work zone limits (give a clear to a train crew while MOW still working)
 - Dispatchers can improperly set speed too high in work zones.
- Voice control provided by EIC
- Work zones marked by flags
 - Flags may be missing or inappropriately displayed.
- MOW workers may work outside assigned work zone

Center of Rail Safety-Critical Excellence

Multi-State Model

- Captures appliance behavior
 - Incorporates transient behaviors
 - Incorporates improper repair effects
- Model Parameters
 - Failure rate (includes effects of transient & permanent)
 - Hardware/software Coverage
 - Repair
 - Human repair coverage

Center of Rail Safety-Critical Excellence

Events Passed At Danger (EPAD)

- Identify train exposure to either an agent violation or an object hazard
- Trigges the potential for a mishap pair condition
 - Simulation trigger to check mishap conditions
 - Either precede or are coincident with a mishap
- ASCAP calculated the last past six Events Passed at Danger(EPADS)
- EPADS equivalent to PHA Fault Tree construction

Center of Rail Safety-Critical Excellence

SEVERITY & MISHAPS

- Severity calculated based on both Historical and Expert Opinion:
 - Societal cost for each Mishap estimated based on historical data comparison with ASCAP variables obtained from the Train Consist Dynamic Behavior
 - Historical data is not sufficient and must be supplemented with Expert Opinion
 - Mean and Variance calculated for each Mishap to determine Non-Accident versus Accident
 - Accident history documented as an FRA Accident Report

Center of Rail Safety-Critical Excellence

EPAD Logs

- CONTENT DERIVED TO SUPPORT:
 - ASCAP HISTORICAL DATA MINING
 - CONSTRUCTION OF EPAD INFORMATION
 - PROBABILISTIC BEHAVIOR
 - OPERATIONAL RULE BOOK COMPLIANCE –NON COMPLIANCE
 - SUPPORT SEVERITY- MISHAP MODEL
 - PROVIDE DATA TO DETERMINE NON ACCIDENT ACCIDENT

Center of Rail Safety-Critical Excellence

CONCLUSION(S)

- PROPOSE AN ASCAP WORKSHOP FOR NEXT RSAC SESSION:
 - ONE DAY SESSION
 - WEB-BASED DEMONSTRATION
- OTHER INFORMATION:
 - COLLABORATION WITH CHINA BEING ESTABLISHED
 - UVA CENTER TO BE DULPLICATED AT SHANGHI UNIVERSITY
 - CHINA FAI CUI TY TO BE IN RESIDENCE AT UVA BY DECEMBER